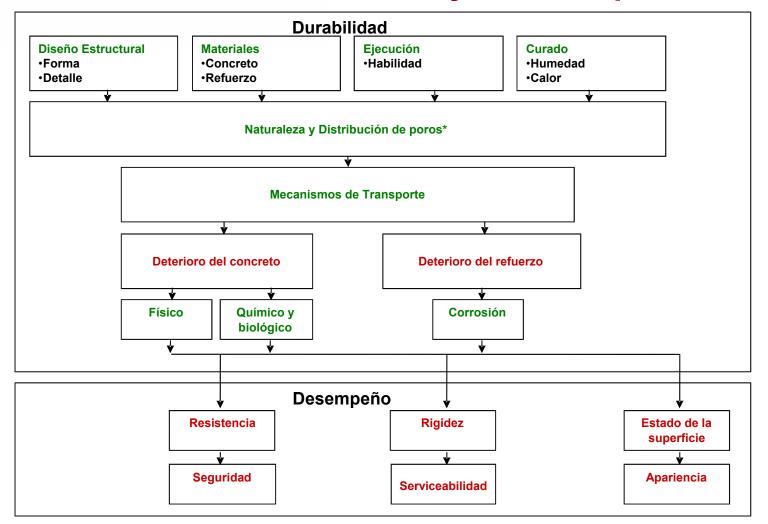
Normativa

Ing. P. Castro Borges, Dr.

¿Cómo ha evolucionado la normativa de DURABILIDAD?

Caso Americano

• ACI 365.1R-00


Service life prediction

Relaciones entre durabilidad y el desempeño.

¿El efecto del ambiente influye en la Durabilidad ?

Consideraciones ambientales

- > Ataque químico
 - Lixiviado
 - Retraso en la formación de etringita.
 - Ataque por sulfatos
 - Ataque por ácidos y bases (álcalis)
 - Reacción álcali-agregado
 - Corrosión del refuerzo
 - Corrosión del acero pre-tensado

Consideraciones ambientales

- > Ataque Físico
 - Cristalización de sales
 - Ataque por congelamiento y deshielo.
 - Abrasión, erosión y cavitación.
 - Daño térmico
- > Efectos combinados.

Consideraciones de diseño y carga estructural

> Antecedentes de los códigos.

> Factores de carga y resistencia.

Interacción entre efectos ambientales y carga estructural.

- > Cambios en la integridad del concreto
 - Físicos y mecánicos
 - Presencia de humedad y mecanismos de transporte
 - Poros, grietas.
 - Permeabilidad (microestructura)
 - Carbonatación, etc...

Consideraciones relacionadas con la construcción

> Fabricación inicial

- Preparación del suelo/subrasante y forma de colocación.
- Colocación del acero de refuerzo
- Colado del concreto, mezclado y distribución
- Colocación del concreto
- >Acabado y curado

Consideraciones relacionadas con la construcción

- > Construcción secuencial
 - Apuntalamiento y desapuntalamiento
 - Juntas

Inspección en servicio, vida de servicio residual

- > Sistemas de materiales de concreto
 - Métodos no destructivos
 - Métodos destructivos
 - Composición de la mezcla
- > Sistemas de materiales de acero de refuerzo
 - Anclajes embebidos

Ejemplo de tipos de información necesaria para la evaluación de vida de servicio

Conformidad de la estructura con el diseño original

Revisión de documentación

Visita preliminar al sitio

- •Inspección visual para el cumplimiento con la documentación de la construcción
- •Revisión con Pacómetro para localizar y caracterizar el acero de refuerzo (por ejemplo, tamaño y espacio)

Análisis preliminar

Inspección para presencia de degradación

Inspección visual

Revisión de grietas

Revisión de Delaminación/Desprendimiento

Revisión de Cloruros

Revisión de Carbonatación

Eliminación de la muestra

Pruebas de laboratorio

Estudios petrográficos (por ejemplo, contenido de aire, distribución aire-vacio, agregados inestables, tipos de peligros, y estimación de *a/cm*)

Estudios químicos (por ejemplo, constituyentes químicos de materiales cementicios, pH, presencia de componentes químicos, y características de pasta y agregados)

Propiedades materiales del concreto y el acero de refuerzo (por ejemplo, esfuerzo y modulo de elasticidad)

Evaluación de degradación

Propiedades materiales especificadas contra actuales

Absorción y permeabilidad del concreto (relativa)

Recubrimiento del concreto (por ejemplo, corazones, o mediciones con Pacómetro)

Presencia de grietas en el concreto, desprendimiento, o delaminación

Profundidad de penetración de cloruros y carbonatación

Actividad de la corrosión en el acero de refuerzo (por ejemplo, mediciones de potencial con media-celda, y pulso galvanostatico, cuatro-electrodos, y pruebas de corrosión)

Agresividad del medioambiente (por ejemplo presencia de humedad, cloruros, y sulfatos)

Reanálisis estructural para condiciones actuales

Reanálisis para las típicas cargas muertas y vivas

Examinación de daños por otras cargas (por ejemplo, sísmica y viento)

Métodos de pruebas no destructivas para determinar las propiedades materiales del concreto endurecido en construcciones existentes (ACI 228.2)

Dropieded	Posibles	Comentario		
Propiedad	Primario	Secundario	Comentario	
Esfuerzo de compresión	Corazones para pruebas de compresión (ASTM C 42 y C 39)	Resistencia a la penetración (ASTM C 803; en pruebas de retirado de perforado)	Esfuerzo del concreto en sitio, comparación de esfuerzos en diferentes lugares, y pruebas no estandarizada de retirado de perforado	
Esfuerzo relativo de compresión	Número de rebote (ASTM C 805); Velocidad de pulso ultrasónico (ASTM C 597)	-	Número de rebote influenciado por las propiedades cercanas a la superficie; la velocidad de pulso ultrasónico da como resultado el promedio de espesor	
Esfuerzo de tensión	Esfuerzo de tensión de corazones (ASTM C 496)	Pruebas de tensión en sitio (ACI 503R; BS 1881; parte 207)	Evaluar la resistencia a la tracción del concreto	
Densidad	Densidad Peso especifico de muestras		-	
Contenido de humedad	Medidores de humedad	Calibrador nuclear	-	
Módulos estáticos de elasticidad			-	
Módulos dinámicos de elasticidad	Pruebas de frecuencia de resonancia para especímenes aserrados	Velocidad de pulso ultrasónico (ASTM C 597); eco de impacto; análisis espectral de ondas de superficie (SASW)	requiere el conocimiento de la densidad y el coeficiente de Poisson (excepto ASTM C 215); el módulo de elasticidad dinámico suele ser mayor que el módulo de elasticidad estática	

Métodos de pruebas no destructivas para determinar las propiedades materiales del concreto endurecido en construcciones existentes (ACI 228.2)

Provided at	Posibles	Occupation		
Propiedad	Primario	Secundario	Comentario	
Contenido de aire; contenido de cemento; y propiedades del agregado (escala. reactividad álcali-agregado, susceptibilidad a la congelación y descongelación)	Exanimación petrográfica de muestras de concreto removidas de la estructura (ASTM C 856, ASTM C 457); contenido de cemento (ASTM C 1084)	Exanimación petrográfica de los agregados (ASTM C 294, ASTM C 295)	Ayudar en la determinación de la causa(s) de daño; grado de daño; calidad del concreto originalmente y actual	
Reactividad álcali-sílice	Pruebas rápidas Cornell/SHRP - (SHRP-C-315)		Establecer en el campo si el deterioro observado se debe a la reactividad álcali-sílice	
Carbonatación, pH	Fenolftaleína (indicador cualitativo), medidor de pH	Otros indicadores de pH (por ejemplo, papeles litmus)	Evaluación de los valores de la corrosión del concreto con la profundidad y susceptibilidad del acero a corroerse; profundidad de carbonatación	
Daño por fuego	Petrografía; numero de rebote (ASTM C 805)	SASW; velocidad de pulso ultrasónico; eco impacto; respuesta al impulso	Número de rebote que permite la demarcación de un concreto daño	
Daño por congelación y descongelación	Petrografía	SASW; respuesta al impulso	-	

Métodos de pruebas no destructivas para determinar las propiedades materiales del concreto endurecido en construcciones existentes (ACI 228.2)

	Posibles métodos			
Propiedad	Primario	Secundario	Comentario	
Contenido de iones cloruro	Acido soluble (ASTM C 1152) y agua soluble (ASTM C 1218)	Exanimación de iones específicos	El ingreso de cloruros aumenta la susceptibilidad del acero de refuerzo a la corrosión	
Permeabilidad al aire	SHRP Método de flujo de aire de superficie (SHRP-S-329)	-	Medidas en sitio en el índice de permeabilidad cerca de la superficie del concreto(15 mm)	
Resistencia eléctrica del concreto	Resistencia de AC usando un resistómetro	SHRP prueba de resistencia de la superficie (SHRP-S-327)	La resistencia de CA es útil para evaluar la eficacia de los aditivos y las adiciones de cemento: SHRP método útil para evaluar la eficacia de los selladores	
Contracción / expansión	Cambio de la longitud de perforación o especímenes aserrados (ASTM C 341)	-	Mediciones del incremento de potencial del cambio de longitud	
Resistencia para penetración de cloruros	Prueba de 90-días de encharcamiento (AASHTO-T- 259)	Indicación de la capacidad eléctrica del concreto para resistir la penetración de iones de cloruro (ASTM C 1202)	Establece la susceptibilidad relativa del concreto a la intrusión de ion cloruro: evaluar la eficacia de los selladores químicos, membranas, y recubrimientos	

- > Predicciones basadas en la experiencia
 - Basadas en el conocimiento acumulado en el campo y en el laboratorio.
 - Conocimiento empírico y heurístico.
 - Colectivamente proveen una gran contribución a las bases de los estándares para el concreto

- > Predicciones basadas en comparaciones de desempeño
 - No es usado comúnmente para el concreto,
 - Aumento de estructuras envejecidas permitirán su uso, así como:
 - ☐ Cambios en los componentes del concreto
 - ☐ Cambios en los microclimas
 - ☐ Avances en el uso de las adiciones químicas y minerales

Pi	ru	eh	as	а	ce	lei	ra	d	a	S
	ш	\mathbf{c}	uJ	ш	\mathbf{c}		ш	u	ч	J

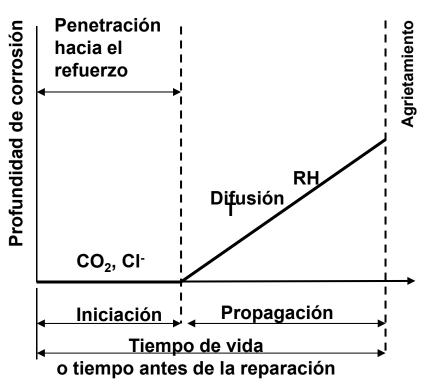
Enfoque:

- ☐ Si es adecuadamente diseñada, desarrollada e interpretada puede ayudar a predecir el desempeño y la vida de servicio de una estructura.
- ☐ Puede proveer información sobre la degradación del concreto que fuera necesaria para resolver modelos matemáticos

Aplicación:

- ☐ Pruebas de congelación y deshielo.
- ☐ Ataque por sulfatos.

Modelos determinísticos


Los determinísticos de durabilidad son utilizados en diseños donde la dispersión de la degradación (o desempeño o vida de servicio) no es tomada en cuenta. Generalmente se usa información generada por datos experimentales puntuales. Con valores de parámetros conocidos el modelo alcanza solamente un valor (de degradación, desempeño o vida de servicio) el cual es llamado el valor principal⁹.

^{9.-} A. Sarja, and E. Vesikari: "Durability Design of Concrete Structures", Manuscript of RILEM Report of TC 130-CSL, RILEM Report Series 14, Chapter 7 Durability models. pp: 97-111, E & FN Spon, Chapman and Hall, 165 p., (1996).

> Modelos determinísticos

Modelo de la corrosión del acero de refuerzo¹⁰.

$$\frac{\partial c_f}{\partial t} = \frac{D\partial^2 c_f}{\partial x^2}$$

Donde

D = Coeficiente de difusión

x = recubrimiento

t = tiempo

C_f = Concentración de iones libres

Tiempo

10.- Tuutti, K. (1982), Corrosion of steel in concrete, CBI, Research report 4, 1982, Stockholm.

> Modelos matemáticos

Ataque de Sulfatos.

$$R = \frac{X_{spall}}{T_{spall}} = \frac{(EB^2c_sC_0D_i)}{\left[\alpha_0\tau(1-\nu)\right]}$$

Donde

X_{spall}= espesor de la zona de reacción causante del desconchamiento

T_{spall} = Tiempo en el que ocurre el desconchamiento

E = Módulo de Young

B = Deformación lineal causada por la concentración de sulfatos

c_s = concentración de sulfatos.

C₀ = concentración de la rección de sulfatos en forma de etringita

D_i = Coeficiente de difusión intrínseca de iones sulfato

 α_0 = factor de rugosidad de la trayectoria de ruptura

v = Relación de Poisson

Modelos matemáticos

Lixiviado.

$$\frac{dM}{dt} = 2.6KA(C_s - C)^{\theta}$$

Donde

M_{spall}= Pérdida de masa en el tiempo t en un área A

K = Constante de disolución obtenida experimentalmente

C_s = Potencial de la solución de agua

C = concentración del material disuelto en el tiempo t

θ = Orden cinético del proceso de disolución

➤ Métodos estocásticos

El planteamiento **probabilístico** (**métodos estocásticos**), es un método donde la estructura está diseñada por seguridad con un cierto **mínimo de fiabilidad** con respecto al objetivo de la vida servicio. También proporciona un diseño con la posibilidad de **evaluar la sensibilidad** de los diferentes parámetros que afectan la vida de servicio.

Métodos estocásticos

- Método de la fiabilidad: combina las pruebas de degradación acelerada con los conceptos probabilísticos.
- Combinación de los métodos estadístico y determinístico.

Métodos para predecir vida de servicio remanente

> Falla por corrosión

$$C(x,t) = C_0 \left[1 - erf \left(\frac{x}{2} (D_{cl} t)^{\frac{1}{2}} \right) \right]$$

Donde:

C(x,t) = concentración de cloruros a la profundidad x después de un tiempo t

D_{cl} = coeficiente de difusión del ión cloruro.

erf = es la función de error

$$\theta(t) = \theta_i - 0.023 * i_{corr} * t$$

Donde:

 $\theta(t)$ = diámetro del acero de refuerzo a un tiempo t, en mm

g = diámetro inicial del acero de refuerzo, en mm

 i_{corr} = velocidad de corrosión, en μ A/cm²

t = tiempo después de haber iniciado el periodo de propagación, en años

0.023 = factor de conversión de μ A/cm² a mm/año

Predicciones basadas en extrapolaciones

$$A_d = k_d t_y^n$$

Donde:

A_d = cantidad de deterioro acumulativa al tiempo t_y, en años y n = orden de tiempo

$$R_d = n k_d t_y^{n-1}$$

Donde:

R_d = velocidad total de degradación

Lo que no incluye el ACI 365.1R

- × Definiciones actualizadas de Durabilidad y Vida de servicio.
- × Consideraciones que tomen en cuenta las zonas climáticas y el cambio climático.
- × Visión holística del problema de la vida de servicio.

NORMAS POR DESEMPEÑO

Tendencias

➤ Varias organizaciones están promoviendo Normas y especificaciones basadas en el desempeño del concreto o aún de las estructuras mismas, especialmente en lo referido a su durabilidad, ejemplos:

►NRMCA: Enfoque P2P,

"Prescription to Performance".

>RILEM: Comité Técnico PSC,

"Performance-based Specification and Control of Durability"

NORMAS POR DESEMPEÑO

Norma Europea

• EN 206-1:2000

Clases de Exposición.

ACI 318-2008. Clases de Exposición

Nomenclatura	Tipo de exposición	Sub-clases
F	Exposición a la congelación y descongelación	F0,F1,F2,F3
S	Exposición a sulfatos	S0,S1,S2,S3
С	Protección contra la corrosión del acero de refuerzo	C0,C1,C2
Р	Concreto de baja permeabilidad	P0,P1

ACI 318-2008. Clases de Exposición

Clase	Descripción				
1. Sin riesgo de corrosión	o ataque				
X0	Concreto simple bajo cualquier exposición excepto congelación. Concreto armado muy Seco.				
2. Corrosión inducida por	2. Corrosión inducida por carbonatación				
Cuando concreto armado es	stá expuesto a aire y humedad				
XC1, XC2, XC3, XC4	Mayor riesgo para humedades intermedias o intermitentes				
3. Corrosión inducida por cloruros que no sean del mar					
Cuando concreto armado está sujeto a contacto con agua conteniendo cloruros (incluyendo sales descongelantes) de fuentes que no sean agua de mar					
XD1, XD2, XD3	Mayor riesgo para humedades intermedias o intermitentes				

ACI 318-2008. Clases de Exposición

Clase	Descripción					
4. Corrosión inducida por	4. Corrosión inducida por cloruros del agua de mar					
Cuando el concreto armado	está sometido a contacto con cloruros del mar o aire marino					
XS1, XS2, XS3	Mayor riesgo para humedades intermedias o intermitentes					
5. Ataque por Congelación	n/Deshielo con o sin sales descongelantes					
Cuando el concreto húmedo deshielo	Cuando el concreto húmedo está expuesto a un ataque por ciclos de congelación y deshielo					
XF1, XF2, XF3, XF4	Mayor riesgo para alta saturación y sales					
6. Ataque Químico						
Cuando el concreto está expuesto al ataque químico por suelo s o líquidos en contacto						
XA1, XA2, XA3	Mayor riesgo para mayores concentraciones de sustancias agresivas					

Algunas Clases de exposición para Corrosión de acero en concreto armado

1. Sin	1. Sin riesgo de corrosión o ataque					
X0	Clima muy seco	Elementos interiores con muy baja humedad				
2. Corr	2. Corrosión inducida por carbonatación					
XC1	Seco o permanentemente húmedo Elementos interiores con baja humedad. Concre permanentemente sumergido en agua					
XC2	Húmedo, raramente seco	Superfícies sometidas a largos períodos de contacto con agua. Muchas fundaciones				
XC3	Humedad moderada	Elementos interiores con humedad moderada a alta Concreto externo protegido de la lluvia				
4. Cori	4. Corrosión inducida por cloruros de agua de mar					
XS1	Expuesta a aire salino sin contacto directo con el mar	Estructuras cerca o en la costa				
XS2	Permanentemente sumergido	Partes de estructuras marinas				
XS3	Zona mareas o salpicaduras	Partes de estructuras marinas				

Límites recomendados a la composición y resistencia del concreto

Clase	a/c Max Kg/kg	Cemento Min. Kg/M³	Clase Resistencia Min. (MPa)			
1. Sin riesgo de	Opcional					
X0		**	C12			
2. Corrosión ind	ducida por carbon	atación				
XC1	0.65	260	C20			
XC2	0.60	280	C2 5			
XC3	0.55	ety [280]	C30			
XC4	0.50	300	C30			
4. Corrosión inc	4. Corrosión inducida por cloruros de agua de mar					
XS1	0.50	300	C30			
XS2	0.45	320	C35			
XS3	0.45	340	C35			

Requisitos Prescriptivos para Ambiente Marino: EN206-1, ACI 318, NMX C403

Norma	a/c Max Kg/kg	Cemento Min. Kg/M³	Resistencia Min. (kgf/cm²)	
EN	0.50	300	300	Costa
EN	0.45	320	350	Mareas
ACI	0.40		350	
NMX	0.55	300	300	

Normas Prescriptivas: Análisis Crítico

Norma	a/c Max Kg/kg	Cemento Min. Kg/M³	Resistencia Min. (kgf/cm²)	
EN	0.50	300	300	Costa
EN	0.45	320	350	Mareas
ACI	0.40		350	
NMX	0.55	300	300	

> Suponen, erróneamente, que distintos materiales (ej. tipos de cemento), en las mismas proporciones, confieren idéntico desempeño al concreto.

Dan pocas oportunidades para innovar y agregar valor.

Tratan al concreto y a los materiales componentes como productos básicos.

¿Cómo se controla la a/cmáx?; ¿se cumple en la realidad?.

Enfoque reglamentario clásico (EN, ACI)

Estas normas se basan mayoritariamente en especificaciones prescriptivas: a/c máxima, contenido de cemento mínimo

¿CUAL ES EL PROBLEMA?

¿CUAL ES EL PROBLEMA?

- Calidad del Hormigón en la Estructura
- Importancia del "Recubrimiento"
- > Factores Vitales: Tratamiento Reglamentario
- > Sensibilización sobre la sustentabilidad

ES NECESARIO UN CAMBIO

¿Existen normas en la actualidad que consideren explicita ó completamente los parámetros ideales de desempeño y de durabilidad?

• Ejemplo de especificación por desempeño ACI 318 Propuesta CSA Clase C-1

	Límite de pre-calificación	PoD o In situ Limite de la media	PoD o In situ límite de valor único		
Esfuerzo (MPa)	>35 + 1.4S	>35.0	>31.5		
Contenido de aire (%)	5-8%	>5 (Concreto fresco)	>5 (Concreto endurecido)		
Espacio de los factores	•		<260		
Permeabilidad (Coulombs)	<1150 (Sugerido)	<1500	<1750 (Sugerido)		
Contracción a Tos 28 días (%)	<0.040	<0.040 (Sugerido)	- <0.050 (Sugerido)		

Situación Ideal

Recubrimiento	DISEÑO	PRACTICA	CONTROL
Espesor	Recubrimiento max/min = f(K)	Ubicación y fijación cuidadosa de las barras	Conformidad medida "in situ" (pacómetro)
Calidad= K-1 K = penetrabilidad	Especificación por desempeño Kmax (ejemplo ASTM C1202)	Producción de concreto Ejecución:	Control de K en laboratorio
		ColadoCompactadoAcabadoDesmoldeCurado	Conformidad medida "in situ"

Caso Suizo

• SIA 262:2003

Concrete Construction.

Sia SN 505 262

2.4 DURABILITY

2.4.1 General

 Respecto a la durabilidad, la calidad del hormigón de recubrimiento es de particular importancia

6.4.2 Production of on impermeable cover concrete

6.4.2.1 The quality of the cover concrete is influenced, among others, by the:

- Composition of the concrete
- Shape and dimensions of the structural member
- Reinforcement content and the arrangement of the reinforcement
- Type and pretreatment of the form work
- Se verificará la impermeabilidad del hormigón de recubrimiento, mediante ensayos de permeabilidad in situ (p.ej. mediciones de permeabilidad al aire) o
- sobre núcleos extraídos de la estructura

Normas prescriptivas

- Normas prescriptivas:
 - Especifican indicadores de durabilidad (a/c) que:
 - ☐ tienen una relación indirecta con los parámetros de desempeño
 - ☐ son difíciles o imposibles de medir en la práctica
 - Desalientan la innovación
 - El punto de control es la planta de concreto, ignorando lo que sucede después
 - No incorporan la calidad de la ejecución
 - Por lo tanto, no garantizan la durabilidad, como lo atestiguan abundantes malos ejemplos

Norma SIA 262 (por Desempeño)

- ➤ El enfoque de la Norma Suiza SIA 262 de establecer como indicador de durabilidad la permeabilidad del recubrimiento medida en la estructura , apunta a controlar el producto terminado.
- ➤ Así, mide el resultado de la contribución de todos los que intervienen en la cadena de la construcción (especificadores, proveedores de concreto y de materiales, contratistas, etc.)

Norma SIA 262 (por Desempeño)

- ➤ Al controlar el producto terminado, impone una mentalidad orientada al desempeño en todos los actores, asegurando una competencia leal:
 - en los Contratistas, que entregan el producto a ser controlado, donde quienes no apliquen buenas prácticas serán penalizados al deber usar mezclas más caras o aplicar medidas curativas
 - en los Productores de concreto, que deberán diseñar, producir y entregar, eficientemente, concretos que alcancen el desempeño requerido
 - en los Proveedores de Materiales (cementos, aditivos, áridos) que deben diseñar sus productos hacia un desempeño óptimo en el concreto

Norma SIA 262 (por Desempeño)

- Incentiva la innovación fomentando el uso de:
 - Concreto autocompactante, que crea un recubrimiento más compacto y uniforme que el concreto vibrado
 - Membranas permeables en las formas
 - Compuestos de curado más eficientes y/o de concretos "autocurantes"
 - Concretos de Alto Desempeño
 - Compuestos de Ultra Alto Desempeño (selectivamente)
 - Concretos de baja retracción y de retracción compensada
- ➤ Facilita la tarea de la D. O., que no necesita controlar todas las etapas de la ejecución sino solamente el producto final (+ rol preventivo)

Normas de durabilidad

Requerimientos de durabilidad.

Requerimientos de durabilidad

Requerimientos de Durabilidad

- > Generalidades
- Concepto Estructural
- > Calidad de los Materiales
- Construcción
- > Inspección
- Verificaciones
- Medidas Especiales de Protección

Requerimientos de durabilidad

ACCIONES DEL MEDIO

	Clase Gener	ral de Exposi		
Tipo	Subtipo	Clase de Proceso	Designación	DESCRIPCION
No agresivo	Seco	Ninguno	C0 (equivalente a I y XC0 y XC1)	Interiores de edificios, no sometidos a condensaciones. Elementos de hormigón en masa.
Rural	Humedad Media a alta y protegido de las Iluvias	Corrosión po	C1 (equivalente a IIa y XC4)	Interiores sometidos a humedades relativas medias altas (>70%/promedio anual) o a condensaciones frecuentes. Hormigones en el exterior, protegidos de la lluvia en zonas de HR media anual superior al 70%
Rural/Urbano	Humedad Media a alta y expuesto a las Iluvias	por carbonatación	C2 (equivalente a IIb y XC3)	Exteriores sometidos a la acción del ambiente (alta temperatura y agua de la lluvia), en zonas con HR media anual inferior al 70%
	Humedad alta y expuesto a las lluvias	ción	C3 (equivalente a IIc y XC2 y XC4)	Exteriores sometidos a la acción del ambiente (alta temperatura y agua de la lluvia), en zonas con HR media anual superior al 70%

Requerimientos de durabilidad

ACCIONES DEL MEDIO

	Clase Gener	al de Exposi	ición	
Tipo	Subtipo	Clase de Proceso	Designación	DESCRIPCION
	Sumergido		M1 (equivalente a IIIb y XS2)	Elementos de estructuras marinas sumergidas permanentemente, por debajo del nivel mínimo de bajamar.
Ma	Zonas de mareas	Corrosión p	M3 (equivalente a IIIc y XS3)	Elementos de estructuras marinas situadas en la zona de mareas
Marino	Zonas aéreas con distancias de 5/500m a la línea de costa	por Cloruros	M4 (equivalente a IIIab y XS1)	Elementos exteriores de estructuras en las proximidades de la línea de costa (de 5 a 500 m)
	Zonas aéreas con distancias de 0/5m	3	M5 (equivalente a IIIaa y XS1)	Elementos de estructuras marinas por encima del nivel de pleamar (salpique) a menos de 5m de la superficie del agua.

^{1 (}muy baja), 2 (baja), 3 (media), 4 (alta), 5 (muy alta): Categorías de Corrosividad de acuerdo a ISO 9223.

C: Ataque por Carbonatación

M: Ataque por Medios Marinos

Requerimientos de durabilidad

Valores límites de concentraciones para distintas clases de exposición de ataque químico proveniente del suelo y aguas subterráneas.

Salar y alguna constant and a							
Características	Método paras	Clasif	icación de Ataque Q	uímico			
químicas	determinar la concentración	Q2 Q3		Q4			
Aguas subterráneas							
lon sulfato SO ²⁻ ₄ (mg/l)	En 196-2	200-600	600-3000	3000-6000			
Valor del pH	ISO 4316	6.5-5.5	5.5-4.5	4.5-4			
CO ₂ agresivo (mg/l)	Pr En 13577:1999	15-40	40-100	100-Saturacion			
Ion amonio NH+ ₄ (mg/I)	ISO 7150-1 ISO 7150-2	15-30	30-60	60-100			
lon magnesio Mg ²⁻ (mg/l)	ISO 7980	7980 300-1000 1000-3000		3000-Saturacion			
		Suelos					
lon sulfato SO ²⁻ ₄ (mg/kg total) ^a	En 196-2 ^b	2000-3000	3000°-12000	12000-24000			
Grado de acidez Baumann-Gully	DIN 4030-2	>200	Estas condiciones no se dan en la practica				

- a. Suelos arcillosos con permeabilidad menor a 10-5 m/s serán ubicados en la clase inferior.
- b. Puede usarse un método alterno en base a extracción de agua.
- c. El valor límite de 3000 mg/kg debería ser disminuido a 2000 mg/kg cuando hay riesgo de acumulación de iones sulfatos en el concreto debido a ciclos de humedecimiento y secado o a succión capilar.

Requerimientos de durabilidad

Generalidades

- Adecuada concepción estructural
- Buena selección de la calidad de los materiales
- Detallado correcto del acero de refuerzo
- Diseño adecuado de la mezcla de concreto, acorde a las condiciones medio ambientales y de servicio.
- Adecuada ejecución tomando en cuenta el transporte y colocación de la mezcla de concreto
- Control de calidad
- Adecuada inspección
- Verificación por medio de ensayos de campo y de laboratorio del concreto a utilizar
- ➤ Identificar la agresividad del medio ambiente mediante actividades de visita al lugar y, de ser posible, ensayos de campo y/o laboratorio de los agresivos ambientales.
- > Otras medidas especiales en lo que a durabilidad se refiere

Requerimientos de durabilidad

Concepción estructural

- La estructura debe ser tolerable a daños, por lo cual la falla de elementos individuales no debe causar el colapso de ésta.
- La selección de una forma estructural apropiada que minimice la absorción de agua o el tiempo de exposición a la humedad.
- Las dimensiones, formas y el detallado de aquellos elementos expuestos deberán permitir suficiente drenaje y evitar la acumulación de agua.

Requerimientos de durabilidad

Concepción estructural

- ➤ Se deberá tener especial cuidado en minimizar el agrietamiento por contracción de secado del concreto, o por las cargas en tensión durante la colocación.
- Los elementos estructurales deben ser accesibles a ser inspeccionados y reparados. Para lograr esto, se debe prever un acceso adecuado a todos los elementos estructurales.

Requerimientos de durabilidad

Calidad de materiales

	Valores limites recomendados para la composición y propiedades del concreto													
	Sin	Co	orrosión	inducida	por		Corrosión inducida por Cloruros					Medios Químicamente Agresivos		
	riesgo		Carbo	natación			De Agua de Mar			Otros origenes				
	CO	CO	C1	C2	C3	M1	М3	M4	M5	CI4	CI5	Q1	Q2	Q 3
Máxima relación a/c	-	0.6 5	0.60	0.55	0.50	0.50	0.45	0.45	0.40	0.45	0.40	0.55	0.50	0. 4 5
Mínimo contenido de Cemento (kg/m3)	-	26 0	280	280	300	300	340	380	420	380	420	300	340	3 8 0
Mínimo espesor de recubrimiento	-	20	20	30	40	50	50	50	70	50	70	50	50	5 0
Otros requerimientos													l) cemer istente a sulfato	

(1) Debe utilizarse un Tipo de Cemento Portland II o V si ocurre exposición en los medios Q3 y Q4. Existen algunos países donde el cemento Portland I presenta un bajo contenido de C3A (< 5 %),por lo cual también podría utilizarse.

Requerimientos de durabilidad

Medidas Especiales de Protección

- Incrementar el espesor de cubrimiento del concreto sobre la armadura.
- Refuerzo Galvanizado.
- Protección Catódica.
- Inhibidores de Corrosión.
- Recubrir el concreto con pinturas, especialmente las de carácter hidrofóbico.

Requerimientos de durabilidad

Verificaciones

> Criterios de porosidad efectiva para efectos de durabilidad

Porosidad Efectiva

Porosidad Efectiva (%)	Criterio de Aceptación
≤ 10	Concreto de buena calidad y compacidad
10 - 15	Concreto de moderada calidad
≥ 15	Concreto de calidad inadecuada

Carga (Coulombs)	Clase de Permeabilidad	
100-1000	Muy baja	
1000 - 2000	Baja	
2000 – 4000	Moderada	
> 4.000	Alta	

Permeabilidad a Cloruros

Norma Mexicana

NMX-C-403-ONNCCE-1999

Industria de la construcciónconcreto hidráulico para uso estructural

Especificaciones

- Materiales componentes
 - Cemento hidráulico
 - Agregados
 - Agua de mezclado
 - Aditivos
- > Requisitos del concreto en estado fresco
 - Revenimiento
 - Masa unitaria
 - Temperatura del concreto fresco en climas extremos

Especificaciones

- > Requisitos del concreto en estado endurecido
 - Resistencia a compresión
 - Modulo de elasticidad
 - Comprobación de la calidad del concreto mediante el ensaye de núcleos
- > Durabilidad

	Tabla A.1 Clasificación de exposición ambiental
Clase de exposición	Condiciones ambientales
1	Ambiente seco: Interior de edificaciones habitables. Componentes interiores que no se encuentran expuestos en forma directa al viento ni a suelos o agua. Regiones con humedad relativa mayor al 60% por un lapso no mayor a tres meses al año.
2a	Ambiente húmedo sin congelamiento: Interior de edificaciones con humedad relativa mayor al 60% por más de tres meses al año. Elementos exteriores expuestos al viento pero no al congelamiento. Elementos en suelos no reactivos o no agresivos, y/o en agua sin posibilidad de congelamiento.
2b	Ambiente húmedo con congelamiento: •Elementos exteriores expuestos al viento y al congelamiento. •Elementos en suelos no reactivos o no agresivos, y/o en agua con posibilidad de congelamiento.
3	Ambiente húmedo con congelamiento y agentes descongelantes: •Elementos exteriores expuestos al viento, con posibilidad de congelamiento y/o exposición a agentes descongelantes. •Elementos en suelos no reactivos o no agresivos y/o en agua con posibilidad de congelamiento y agentes químicos descongelantes.
4	Ambiente marino: •Elementos en zonas de humedad o sumergidas en el mar con una cara expuesta al aire. •Elementos en aire saturado de sales (zona costera).

	Tabla A.1 Clasificación de exposición ambiental (continuación)				
Clase de exposición	Condiciones ambientales				
5a	Ambiente de agresividad química ligera (por gases, líquidos o sólidos): •En contacto con agua PH $6.5-5.5$ CO_2 agresivo (en mg/l como CO_2) Amonio (en mg/l como NH^{4+}) Magnesio (en mg/l como Mg^{2+}) Sulfato (en mg/l como SO_4^{2-}) •En contacto con suelo				
	Grado de acidez según Baumann – Gully Sulfatos (en mg de SO ₄ ²-/kg de suelo secado al aire)	Mayor a 20 2000 – 6000			
5b	Ambiente de agresividad química moderada (por gases •En contacto con agua PH CO ₂ agresivo (en mg/l como CO ₂ /l) Amonio (en mg/l como NH ⁴⁺ /l) Magnesio (en mg/l como Mg ²⁺ /l) Sulfato (en mg/l como SO ₄ ²⁻ /l) •En contacto con suelo Sulfatos (en mg de SO ₄ ²⁻ /kg de suelo secado al aire)	5.5 – 4.5 31 - 60 31 - 60 301 - 1500 601 - 3000			

Tabla A.1 Clasificación de exposición ambiental (continuación)						
Clase de exposición	Clase de exposición					
5c	Ambiente de agresividad química alta (por gases, líquide En contacto con agua PH CO ₂ agresivo (en mg/l como CO ₂ /l) Amonio (en mg/l como NH ⁴⁺ /l) Magnesio (en mg/l como Mg ²⁺ /l) Sulfato (en mg/l como SO ₄ ²⁻ /l) •En contacto con suelo Sulfatos (en mg de SO ₄ ²⁻ /kg de suelo secado al aire)	dos o sólidos): 4.5 – 4.0 61 - 100 61 - 100 1501 - 3000 3001 - 6000 >12000				
5d	Ambiente de agresividad química muy alta (por gases, •En contacto con agua PH CO ₂ agresivo (en mg/l como CO ₂ /l) Amonio (en mg/l como NH ⁴⁺ /l) Magnesio (en mg/l como Mg ²⁺ /l) Sulfato (en mg/l como SO ₄ ²⁻ /l)	(quidos o sólidos): <4.0 >100 >100 >3000 >6000				

Nota A.1.- En todos los casos regirá la condición o combinación de exposición más agresiva.

Tabla A.2.a Requisitos de durabilidad según la clase de exposición										
Requisito		Clase de exposición según la tabla A.1.								
		1	2a	2b	3	4	5 a	5 b	5 c	5d
Resistencia a la compresión (kg/cm²).	Concreto reforzado. Concreto presforzado o postensado.	≥ 200 ≥ 250	≥ 250	≥ 250	≥ 250	≥ 300	≥ 250	≥ 300	≥ 350	≥ 350
Relación agua/cementante.	Concreto reforzado. Concreto presforzado o postensado.	≥ 0.60 ≥ 0.60	≥ 0.60 ≥ 0.60	≥ 0.55	≥ 0.55	≥ 0.55	≥ 0.55	≥ 0.50	≥ 0.45	≥ 0.45
Contenido de cemento para agregados gruesos entre 20 y 40 mm (kg/cm³).	Concreto reforzado. Concreto presforzado o postensado.	≥ 270 ≥ 300	≥ 300 ≥ 300	≥ 300 ≥ 300	≥ 300 ≥ 300	≥ 300	≥ 300	≥ 300	≥ 300	≥ 300
Contenido de aire por tamaño máximo de agregado %. Se permite una tolerancia de ± 1.5 %.	≤ 40 mm ≤ 20 mm ≤ 10 mm			Si el concret o se puede saturar ver clase 3	≥ 4 ≥ 5 ≥ 6					
Requisitos adicionales para agregado.				Resiste ntes al congela miento	Resiste ntes al congela miento					
Requisitos adicionales para cemento.							Véase Tablas A.2.b. y A.2.c.		.C.	

Para protección contra ataques por agentes agresivos en aguas o suelos, véase tablas A.2.b. y A.2.c.

Tabla A.2.b.- Especificaciones contra el ataque químico de agentes agresivos cuando existen sulfatos

Parámetros	Clase de exposición 5a		Clase de exposición 5a	Clase de exposición 5a	Clase de exposición 5a	
	Ligera		Moderada	Alto	Muy alto	
Tipo de cemento	СРО	RS	RS	RS	RS	
Máxima relación agua/cementante	0.50	0.55	0.50	0.45	0.45	
Mínimo contenido de cementante (kg/cm³)	330	300	330	370	370	
Protección adicional	No necesaria		No necesaria	No necesaria	No necesaria	

CPO - Cemento Portland Ordinario.

RS – Cemento con características especiales de resistencia a los sulfatos según NMX-C-414-ONNCCE.

Tabla A.2.c.- Especificaciones contra el ataque químico de agentes agresivos cuando no existen sulfatos

Parámetros	Clase de exposición 5a	Clase de exposición 5a	Clase de exposición 5a	Clase de exposición 5a	
	Ligera	Moderada	Alto	Muy alto	
Tipo de cemento	СРО	RS	RS	RS	
Máxima relación agua/cementante	0.55	0.50	0.45	0.45	
Mínimo contenido de cementante (kg/cm³)	300	330	370	370	
Protección adicional	No necesaria	No necesaria	No necesaria	No necesaria	

CPO - Cemento Portland Ordinario.

RS – Cemento con características especiales de resistencia a los sulfatos según NMX-C-414-ONNCCE (véase Capitulo 3).

Tabla A.2.a Requisitos de durabilidad según la clase de exposición					
Tipo de construcción	Contenido de iones cloruro (Cl ⁻) solubles en agua. % en peso de cemento				
Concreto presforzado	0.06				
Concreto reforzado expuesto al cloro en condiciones húmedas	0.08				
Concreto reforzado expuesto al cloro en condiciones secas	0.15				
Otras construcciones	0.30				

Tabla A.4.1 Métodos de prueba para la durabilidad según la clase de exposición						
Requ	Se debe utilizar el método de prueba indicado en:					
Resistencia a la compresión (kg/cm²)	Concreto reforzado Concreto presforzado o postensado	NMX-C-083-ONNCCE NMX-C-169-ONNCCE (véase Capítulo 3)				
Relación agua-cemento	Concreto reforzado Concreto presforzado o postensado	NMX-C-159 (véase Capítulo 3)				
Contenido de cemento para agregados gruesos entre 20 y 40 mm (kg/cm³)	Concreto reforzado Concreto presforzado o postensado	Véase 9.4.				
Contenido de aire por tamaño máximo de agregado %. Se permite una tolerancia de ± 1.5 %.	≤ 40 mm ≤ 20 mm ≤ 10 mm	NMX-C-157, NMX-C-162 (véase Capítulo 3)				
Requisitos adicionales para agregados		Véase 9.5.				
Requisitos adicionales para cemento		Véase Tablas A.2.b. y A.2.c.				

Tabla A.4.1 Métodos de prueba para la durabilidad según la clase de exposición (continuación)					
Requisito	Se debe utilizar el método de prueba indicado en:				
Ataque por exposición ambiental					
Humedad relativa	Véase 9.10.				
pH en agua	NMX-AA-088-89				
CO2 en agua	NMX-C-283				
Amonio en el agua	NMX-C-283				
Sulfato en el agua	NMX-C-283				
Sulfato en el suelo	A.4.3. y NMX-C-283				
Ácidos en el suelo	A.4.4.				
Contenido de cemento	Véase 9.7.				
Resistencia al congelamiento de agregados	Véase 9.5.				

Tabla A.4.1 Métodos de prueba para la durabilidad según la clase de exposición (continuación)							
Requisito	Se debe utilizar el método de prueba indicado en:						
Ataque químico de agentes agresivos cuando existen sulfatos							
Tipo de cemento							
Máxima relación agua/cementante	Véase 9.4. y 9.5.						
Mínimo contenido de cementante (kg/cm³)	Véase 9.4.						
Protección adicional							
Ataque químico de agentes agresivos	s cuando no existen sulfatos						
Tipo de cemento							
Máxima relación agua/cementante	Véase 9.4. y 9.5.						
Mínimo contenido de cementante (kg/cm³) Véase 9.4.							
Protección adicional							

Lo que no incluye la Norma Mexicana

- × Definiciones actualizadas de Durabilidad y Vida de servicio.
- Consideraciones que tomen en cuenta las zonas climáticas y el cambio climático.
- × Visión holística del problema de la vida de servicio.
- × Inspección y ensayos de durabilidad.
- × Modelos de predicción de vida de servicio, etc.

Incorporación de la sostenibilidad en la normativa por durabilidad

Índice

- Introducción
- ▶ 1. Objetivo
- > 2. Campo de Aplicación
- > 2.1 Responsabilidad
- 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- 5.2. Planeación de la vida de servicio del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- 5.2.1.4. Diseño del plan de mantenimiento
- 5.2.2. Clasificación según el ambiente de exposición
- ▶ 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5 2 3 2 Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5 3 2 3 Consolidación

Proyecto de Norma General Mexicana de Durabilidad

Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación

PROY-NMX-C-000-ONNCCE-2012

Índice

▶ Introducción

- 1. Objetivo
- 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- 3.Referencias
- ▶ 4.Términos y Definiciones
- 5.Especificaciones
- ▶ 5.1. Generalidades
- 5.2. Planeación de la vida de servicio del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- ▶ 5.2.1.4. Diseño del plan de mantenimiento
- 5.2.2. Clasificación según el ambiente de exposición
- ▶ 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- 5.3.2.3. Consolidación
- ▶ 5.3.2.4. Curado

Introducción

En la actualidad, las estructuras de concreto demandan un mejor desempeño debido al cambio climático global que se está generando, por lo que cada proyecto debe considerar no sólo el criterio estructural, arquitectónico, de instalaciones, etc., sino también criterios por durabilidad.

Índice

Introducción

→ 1. Objetivo

- ▶ 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- 5.2. Planeación de la vida de servicio del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- 5.2.1.4. Diseño del plan de mantenimiento
- ▶ 5.2.2. Clasificación según el ambiente de exposición
- 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- ▶ 5.3.2.4. Curado

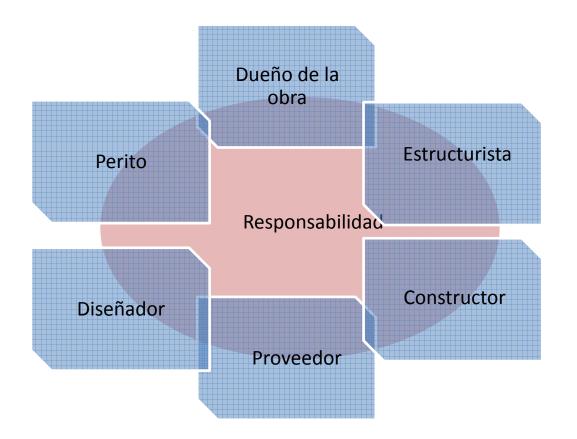
1. Objetivo

Proporcionar reglas, procedimientos, métodos. criterios ٧ recomendaciones para concebir. ejecutar, inspeccionar, diagnosticar, provectar, reparar, rehabilitar o reforzar estructuras de concreto con criterios de durabilidad que se encuentren sometidas a distintos tipos de ambiente mexicanos y que eventualmente apliquen en otros países bajo condiciones ambientales similares.

Índice

- Introducción
- ▶ 1. Objetivo
- > 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- 5.2. Planeación de la vida de servicio del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- 5.2.1.4. Diseño del plan de mantenimiento
- 5.2.2. Clasificación según el ambiente de exposición
- 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- ▶ 5.3.2.4. Curado

2. Campo de aplicación


Esta norma mexicana es aplicable a todo elemento y estructura de concreto reforzado desde su concepción pasando por su puesta en servicio hasta su colapso total o parcial, afectado o no por ambientes agresivos

Índice

- Introducción
- ▶ 1. Objetivo
- ▶ 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- 5.2. Planeación de la vida de servicio del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- 5.2.1.4. Diseño del plan de mantenimiento
- ▶ 5.2.2. Clasificación según el ambiente de exposición
- ▶ 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- ▶ 5.3.2.4. Curado

2.1. Responsabilidad

Índice

- Introducción
- ▶ 1. Objetivo
- 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- **→ 3.Referencias**
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- 5.2. Planeación de la vida de servicio del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- ▶ 5.2.1.4. Diseño del plan de mantenimiento
- ▶ 5.2.2. Clasificación según el ambiente de exposición
- ▶ 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- > 5.3.2.4. Curado

3. Referencias

NMX-C-083-NCCE	Industria	de	la	construcción-Con	creto-
	Determina	ción de	la resis	tencia a la compresi	ón de
	cilindros d	e concre	to-Mét	odo de prueba	
NMX-C-111-NNCCE	Industria	de la	const	rucción-Agregados	para
	concreto h	nidráulic	o-Espec	ificaciones y métod	os de
	prueba.				

4. Términos y Definiciones

5. Especificaciones

Índice

- Introducción
- ▶ 1. Objetivo
- > 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- 5.2. Planeación de la vida de servicio del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- 5.2.1.4. Diseño del plan de mantenimiento
- 5.2.2. Clasificación según el ambiente de exposición
- 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- ▶ 5.3.2.4. Curado

3. Referencias

4. Términos y Definiciones

Acero

Aleaciones hierro-carbono, con un contenido máximo de carbono del 2%, aproximadamente. El carbono dota al hierro de destacadas propiedades mecánicas, necesarias para sus aplicaciones industriales.

Corrosión

La transformación de un metal del estado elemental al combinado (estado iónico) por reacción con el medio ambiente.

5. Especificaciones

Índice

- Introducción
- ▶ 1. Objetivo
- ▶ 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- ▶ 3.Referencias
- ▶ 4.Términos y Definiciones
- **▶** 5.Especificaciones
- ▶ 5.1. Generalidades
- 5.2. Planeación de la vida de servicio del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- 5.2.1.4. Diseño del plan de mantenimiento
- 5.2.2. Clasificación según el ambiente de exposición
- 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- ▶ 5.3.2.4. Curado

3. Referencias

4. Términos y Definiciones

5. Especificaciones

5.1. Generalidades

Índice

- Introducción
- ▶ 1. Objetivo
- ▶ 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- ▶ 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones

▶ 5.1. Generalidades

- 5.2. Planeación de la vida de servicio del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- ▶ 5.2.1.4. Diseño del plan de mantenimiento
- ▶ 5.2.2. Clasificación según el ambiente de exposición
- ▶ 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- > 5.3.2.4. Curado

Tabla 1.- Definiciones de durabilidad

Código o Institución	Definición de durabilidad	Año
Instituto de Arquitectos de Japón (AIJ)	No la define explícitamente.	1993
Guía para el uso en el Reino Unido de DD ENV 206: 1992 Concreto (PD 6534)	No la define explícitamente.	1993
Sociedad Japonesa de Ingenieros Civiles (JSCE 1995)	No la define explícitamente.	1995
Norma Canadiense (CSA 478-95)	No la define explícitamente.	1995
Norma Mexicana (NMX-C-403- ONNCCE-1999)	Es la capacidad del concreto hidráulico para uso estructural de resistir durante un tiempo determinado (vida útil) la acción ambiental, ataque químico, abrasión, corrosión del acero de refuerzo o cualquier otro proceso de deterioro para mantener su forma original, condición de servicio y propiedades mecánicas.	1999
Instrucción Española de Hormigón Estructural (EHE)	La durabilidad de una estructura de concreto es su capacidad para soportar, durante la vida útil para la que ha sido proyectada, las condiciones físicas y químicas a las que está expuesta, y que podrían llegar a provocar su degradación como consecuencia de efectos diferentes a las cargas y solicitaciones.	1999
ACI 365.1R-00 (ASTM E 632)	La capacidad de mantener la serviciabilidad de un producto, componente, ensamble o construcción durante un tiempo especificado.	2000
Norma Brasileña (NBR 6118), Proyecto de estructuras de concreto- procedimiento	Consiste en la capacidad de la estructura de resistir las influencias ambientales previstas y definidas en conjunto por el autor del proyecto estructural y el contratista desde el inicio de los trabajos de elaboración del proyecto.	2002
Organización Europea para la Idoneidad Técnica (EOTA)	No la define explícitamente.	2006

Índice

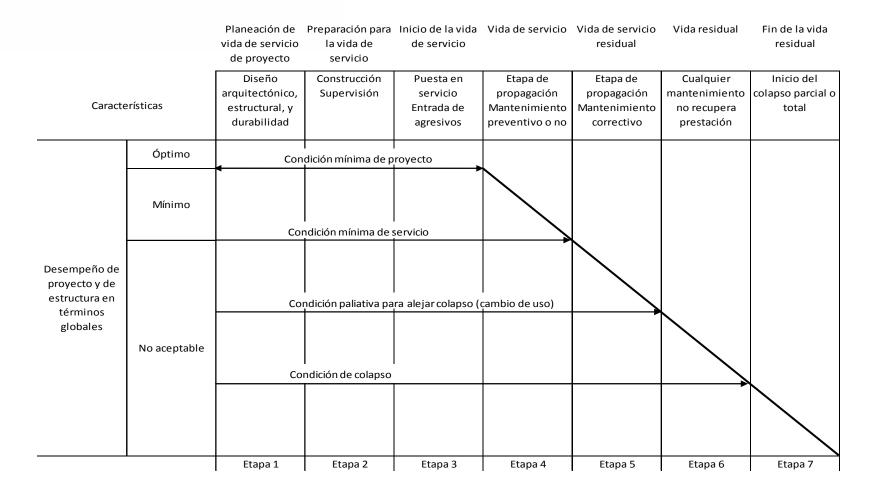

- Introducción
- ▶ 1. Objetivo
- 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- ▶ 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- 5.2. Planeación de la vida de servicio del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- ▶ 5.2.1.4. Diseño del plan de mantenimiento
- ▶ 5.2.2. Clasificación según el ambiente de exposición
- ▶ 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- ▶ 5.3.2.4. Curado

Tabla 2- Definiciones de vida de servicio

Código o Institución	Definición			
Coulgo o mstitución	Vida de Servicio	Año		
Red DURAR (Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, CYTED)	Es el periodo de tiempo durante el cual la estructura conserva los requerimientos de proyecto en términos de seguridad, funcionalidad y estética, sin costos inesperados de mantenimiento	1997		
Directiva para Productos de Construcción (CPD)	Es el periodo de tiempo durante el cual el desempeño de los trabajos estará manteniéndose a un nivel compatible con el cumplimento de los requerimientos esenciales.	1998		
Instrucción Española de Hormigón Estructural (EHE)	Se entiende por vida útil de la estructura el periodo de tiempo, a partir de la fecha en la que finaliza su ejecución, durante el que deben mantenerse las exigencias básicas en unos límites aceptables. Durante ese periodo requerirá una conservación normal, que no implique operaciones de rehabilitación.	1999		
ACI 365.1R-00 (ASTM E 632)	Es el periodo de tiempo después de la instalación, durante el cual todas las propiedades exceden los valores mínimos aceptables con mantenimiento rutinario	2000		
CIB W080/RILEM 175 SLM.	En general, el fin de la vida de servicio es el punto en el tiempo, cuando la función prevista no se cumple.	2004		
Documento Normativo del Código de Edificación de Nueva Zelanda	No se define explícitamente	2004		

Modelo Conceptual de 7 etapas

Índice

- Introducción
- ▶ 1. Objetivo
- > 2. Campo de Aplicación
- 2.1 Responsabilidad
- 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- <u>5.2. Planeación de la vida útil del</u> proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- ▶ 5.2.1.4. Diseño del plan de mantenimiento
- ▶ 5.2.2. Clasificación según el ambiente de exposición
- 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- 5.3.2.3. Consolidación
- ▶ 5.3.2.4. Curado

5.2 Planeación de vida de servicio de proyecto (diseño arquitectónico, estructural y durabilidad)

Ésta es quizá la etapa más importante de la vida útil, pues es donde se establecen todos los criterios y especificaciones para cumplir con los objetivos para los que fue diseñada la estructura.

- 5.2.1.1. Diseño arquitectónico
- 5.2.1.2. Diseño estructural
- 5.2.1.3. Diseño por durabilidad
- 5.2.1.4. Diseño del plan de mantenimiento

Caracterís	sticas	Diseño arquitectónico, estructural, y durabilidad	Construcción Supervisión	Puesta en servicio Entrada de agresivos	Etapa de propagación Mantenimiento preventivo o no	Etapa de propagación Mantenimiento correctivo	Cualquier mantenimiento no recupera prestación	Inicio del colapso parcial o total
	Óptimo	Condic	ón mínima de pro	vecto				
Desempeño de	Mínimo	Condic	ión mínima de ser	vicio				
proyecto y de estructura en términos globales	No aceptable	Condid	ión paliativa para	alejar colapso (can	nbio de uso)			
		Condi	ción de colapso					
		Etapa 1	Etapa 2	Etapa 3	Etapa 4	Etapa 5	Etapa 6	Etapa 7

Índice

- Introducción
- ▶ 1. Objetivo
- > 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- ▶ 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- <u>5.2. Planeación de la vida útil del</u> proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- ▶ 5.2.1.4. Diseño del plan de mantenimiento
- ▶ 5.2.2. Clasificación según el ambiente de exposición
- ▶ 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- > 5.3.2.4. Curado

5.2.2. Clasificación según el ambiente de exposición

Clase de	Condiciones ambientales					
exposición						
1	Ambiente seco:					
	Interior de edificaciones habitables					
	Componentes interiores que no se encuentran expuestos el	n forma directa al viento ni				
	a suelos o agua	no mover a tree masses al				
	Regiones con humedad relativa mayor al 60% por un lapso año	no mayor a tres meses ar				
2a	Ambiente húmedo sin congelamiento:					
	Interior de edificaciones con humedad relativa mayor al 60% año	por más de tres meses al				
	Elementos exteriores expuestos al viento pero no al congela	miento				
	Elementos en suelos no reactivos o no agresivos, y/o en a congelamiento	gua con sin posibilidad de				
2b	Ambiente húmedo con congelamiento:					
	 Elementos exteriores expuestos al viento y al congelamiento 					
	 Elementos en suelos no reactivos o no agresivos , y/o en agua con posibilidad o congelamiento 					
3	Ambiente húmedo con congelamiento y agentes descongela	antes:				
	Elementos exteriores expuestos al viento, con posibilida	ad de congelamiento y/o				
	exposición a agentes descongelantes					
	Elementos en suelos no reactivos o no agresivos y/o en	agua con posibilidad de				
4	congelamiento y agentes químicos descongelantes					
4	Ambiente marino:	and the care expressed at				
	Elementos en zonas de humedad o sumergidas en el mar aire	con una cara expuesta ai				
	Elementos en aire saturado de sales (zona costera)					
5a	Ambiente de agresividad química ligera (por gases, líquidos	o sólidos):				
	En contacto con agua	- C - C - C - C - C - C - C - C - C - C				
	PH	6,5-5,5				
	CO ₂ agresivo (en mg/l como CO ₂₎	15-30				
	Amonio (en mg/l como NH ⁴⁺)	15-30				
	Magnesio (en mg/l como Mg ²⁺)	100-300				
	Sulfato (en mg/l como SO ₄)	200-600				
	En contacto con suelo					
	Grado de acidez según Baumann – Gully	Mayor a 20				
	Sulfatos (en mg de SO ₄ ² /kg de suelo secado al aire 2000 - 6000					

Índice

- Introducción
- ▶ 1. Objetivo
- ▶ 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- <u>5.2. Planeación de la vida útil del</u> proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- 5.2.1.4. Diseño del plan de mantenimiento
- ▶ 5.2.2. Clasificación según el ambiente de exposición
- ▶ 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- ▶ 5.3.2.4. Curado

5b	Ambiente de agresividad química moderada (por gases, líquidos o sólidos):							
	 En contacto con agua 							
	PH	5,5 - 4,5						
	CO ₂ agresivo (en mg CO ₂ /I)	31 – 60						
	Amonio (en mg NH ₄ ⁺ /I)	31 - 60						
	Magnesio (en mg Mg ²⁺ /I)	301 - 1500						
	Sulfato (en mg SO ₄ ²⁻ /I)	601 - 3000						
	En contacto con suelo							
	Sulfatos (en mg de SO ₄ ²⁻ /kg de suelo secado al aire	6000 - 12000						
5c	Ambiente de agresividad química alta (por gases, líquidos o sólidos):							
	En contacto con agua							
	PH	4,5 - 4,0						
	CO ₂ agresivo (en mg CO ₂ /I)	61 - 100						
	Amonio (en mg NH ₄ ⁺ /I)	61 - 100						
	Magnesio (en mg Mg ²⁺ /I)	1501 - 3000						
	Sulfato (en mg SO ₄ ²⁻ /I)	3001 - 6000						
	En contacto con suelo							
	Sulfatos (en mg de SO ₄ ²⁻ /kg de suelo secado al aire	> 1200						
5d	Ambiente de agresividad química muy alta (por gases, líquidos o sólidos):							
	En contacto con agua	•						
	pH	< 4						
	CO ₂ agresivo (en mg/l como CO ₂₎	> 100						
	Amonio (en mg/l como NH ⁴⁺)	> 100						

Índice

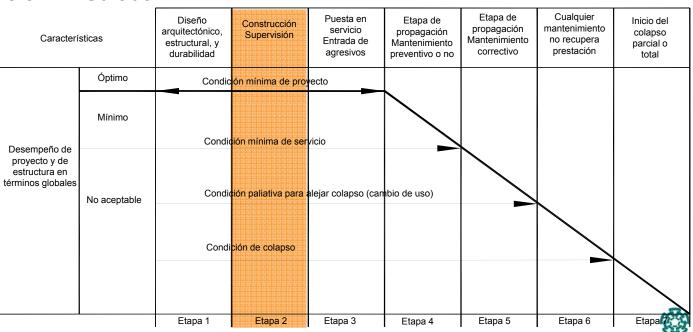
- Introducción
- ▶ 1. Objetivo
- ▶ 2. Campo de Aplicación
- ▶ 2.1 Responsabilidad
- ▶ 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- <u>5.2. Planeación de la vida útil del</u> proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- ▶ 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- 5.2.1.4. Diseño del plan de mantenimiento
- ▶ 5.2.2. Clasificación según el ambiente de exposición
- ▶ 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- ▶ 5.3.2.3. Consolidación
- > 5.3.2.4. Curado

5.2.3. Requisitos de durabilidad

Po	Clase de exposición según la tabla A.1.									
Re	quisito	1	2a	2b	3	4	5a	5b	5c	5d
Resistencia a la compresión (kg/cm²)	Concreto reforzado Concreto presforzado o postensado	≥200 ≥250	<u>></u> 250	<u>></u> 250	<u>≥</u> 250	<u>≥</u> 300	<u>></u> 250	<u>></u> 300	<u>≥</u> 350	<u>≥</u> 350
Relación agua/cementante	Concreto reforzado Concreto presforzado o postensado	<u><</u> 0.60 <u><</u> 0.60	<u><</u> 0.60 <u><</u> 0.60	<u><</u> 0.55	<u><</u> 0.55	<u><</u> 0.55	<u><</u> 0.55	<u><</u> 0.50	<u><</u> 0.45	<u><</u> 0,45
Contenido de cemento para agregados gruesos entre 20 y 40 mm (kg/m3)	Concreto reforzado Concreto presforzado o postensado	≥270 ≥300	≥300 ≥300	≥300 ≥300	≥300 ≥300	<u>></u> 300	~200	~200	<u>></u> 300	<u>></u> 300
Contenido de aire por tamaño máximo de agregado %. Se permite una tolerancia de ± 1.5 %	≤ 40 mm ≤ 20mm ≤ 10 mm			Si el concreto se puede saturar ver clase 3						
Requisitos adicionales para agregado				Resisten -tes al congela míento	Resistan -tes al congela míento					
Requisitos adicionales para cemento							véa	se Tablas	5 y 6	

5.2.3.1. Recubrimiento de concreto

5.2.3.2. Relación agua/cementante


Índice

- Introducción
- 1. Objetivo
- > 2. Campo de Aplicación
- 2.1 Responsabilidad
- ▶ 3.Referencias
- ▶ 4.Términos y Definiciones
- ▶ 5.Especificaciones
- ▶ 5.1. Generalidades
- 5.2. Planeación de la vida útil del proyecto (diseño arquitectónico, estructural y durabilidad).
- ▶ 5.2.1. Generalidades
- ▶ 5.2.1.1. Diseño arquitectónico
- 5.2.1.2. Diseño estructural
- ▶ 5.2.1.3. Diseño por durabilidad
- ▶ 5.2.1.4. Diseño del plan de mantenimiento
- 5.2.2. Clasificación según el ambiente de exposición
- ▶ 5.2.3. Requisitos de durabilidad
- ▶ 5.2.3.1. Recubrimiento de concreto
- ▶ 5.2.3.2. Máxima relación a/c
- ▶ 5.3. Preparación para la vida de servicio (construcción y supervisión)
- ▶ 5.3.1. Generalidades
- ▶ 5.3.2. Calidad del concreto
- ▶ 5.3.2.1. Transporte
- ▶ 5.3.2.2. Colocación
- 5.3.2.3. Consolidación
- ▶ 5.3.2.4. Curado

5.3 Preparación para la vida de servicio (construcción y supervisión)

La fase de ejecución es crítica por la cantidad de omisiones que hay a las condiciones dictadas por el proyecto.

- 5.3.2. Calidad del concreto
- 5.3.2.1. Transporte
- 5.3.2.2. Colocación
- 5.3.2.3. Consolidación
- 5.3.2.4. Curado

Índice

- ▶ 5.3.2.5. Resistencia a la compresión
- ▶ 5.3.3. Recubrimiento de concreto
- ▶ 5.3.4. Dosificación de mezcla
- ▶ 5.3.5. Varillas de acero
- ▶ 5.3.6. Anclaje y doblez
- ▶ 5.3.7. Grado de permeabilidad
- ▶ 5.3.8. Contenido de cloruros
- ▶ 5.3.9. Desniveles
- ▶ 5.3.10. Drenajes
- ▶ 5.3.11. Pares galvánicos
- ▶ 5.3.11.1. Instalaciones aéreas
- ▶ 5.3.11.2. Inmersos en concreto
- ▶ 5.3.12. Impermeabilización
- ▶ 5.3.13. Separación entre separadores
- ▶ 5.4. Inicio de la vida de servicio (puesta en servicio y entrada de agresivos)
- ▶ 5.4.1. Generalidades
- 5.4.2. Verificación de recubrimiento de concreto
- 5.4.3. Dosificación de mezcla
- ▶ 5.4.4. Varillas de acero
- ▶ 5.4.5. Anclaje v doblez
- ▶ 5.4.6. Grado de permeabilidad
- ▶ 5.4.7. Contenido de cloruros
- ▶ 5.4.8. Desniveles
- ▶ 5.4.9. Drenajes
- ▶ 5.4.10. Pares galvánicos
- ▶ 5.4.10.1. Instalaciones aéreas
- ▶ 5.4.10.2. Inmersos en concreto

- 5.3.2.5. Resistencia a la compresión
- 5.3.3. Recubrimiento de concreto
- 5.3.4. Dosificación de mezcla
- 5.3.5. Varillas de acero
- 5.3.6. Anclaje y doblez
- 5.3.7. Grado de permeabilidad
- 5.3.8. Contenido de cloruros
- 5.3.9. Desniveles
- 5.3.10. Drenajes
- 5.3.11. Pares galvánicos
- 5.3.11.1. Instalaciones aéreas
- 5.3.11.2. Inmersos en concreto
- 5.3.12. Impermeabilización
- 5.3.13. Separadores

Índice

- ▶ 5.3.2.5. Resistencia a la compresión
- ▶ 5.3.3. Recubrimiento de concreto
- ▶ 5.3.4. Dosificación de mezcla
- ▶ 5.3.5. Varillas de acero
- ▶ 5.3.6. Anclaje y doblez
- ▶ 5.3.7. Grado de permeabilidad
- ▶ 5.3.8. Contenido de cloruros
- ▶ 5.3.9. Desniveles
- ▶ 5.3.10. Drenajes
- ▶ 5.3.11. Pares galvánicos
- ▶ 5.3.11.1. Instalaciones aéreas
- ▶ 5.3.11.2. Inmersos en concreto
- ▶ 5.3.12. Impermeabilización
- ▶ 5.3.13. Separación entre separadores
- ▶ 5.4. Inicio de la vida de servicio (puesta en servicio y entrada de agresivos)
- ▶ 5.4.1. Generalidades
- 5.4.2. Verificación de recubrimiento de concreto
- ▶ 5.4.3. Dosificación de mezcla
- ▶ 5.4.4. Varillas de acero
- ▶ 5.4.5. Anclaje y doblez
- ▶ 5.4.6. Grado de permeabilidad
- ▶ 5.4.7. Contenido de cloruros
- ▶ 5.4.8. Desniveles
- ▶ 5.4.9. Drenajes
- ▶ 5.4.10. Pares galvánicos
- ▶ 5.4.10.1. Instalaciones aéreas
- ▶ 5.4.10.2. Inmersos en concreto

5.4. Inicio de la vida de servicio (puesta en servicio, entrada de agresivos)

Esta etapa es un punto en el tiempo.

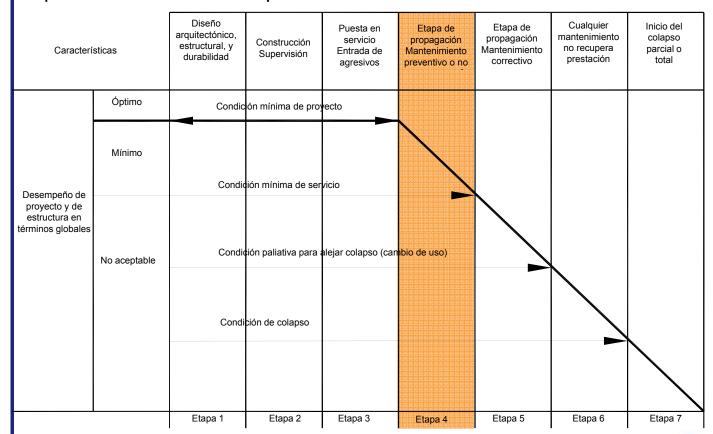
- 5.4.2. Verificación de recubrimiento de concreto
- 5.4.3. Dosificación de mezcla
- 5.4.4. Varillas de acero
- 5.4.5. Anclaje y doblez

Caracterís	sticas	Diseño arquitectónico, estructural, y durabilidad	Construcción Supervisión	Puesta en servicio Entrada de agresivos	Etapa de propagación Mantenimiento preventivo o no	Etapa de propagación Mantenimiento correctivo	Cualquier mantenimiento no recupera prestación	Inicio del colapso parcial o total
	Óptimo	Condic	ión mínima de pro	vecto				
Desempeño de	Mínimo	Condic	ión mínima de ser	vicio				
proyecto y de estructura en términos globales	No aceptable	Condid	ión paliativa para	alejar colapso (can	ibio de uso)			
		Condi	ción de colapso					
		Etapa 1	Etapa 2	Etapa 3	Etapa 4	Etapa 5	Etapa 6	Etapa 7

Índice

- ▶ 5.3.2.5. Resistencia a la compresión
- ▶ 5.3.3. Recubrimiento de concreto
- ▶ 5.3.4. Dosificación de mezcla
- ▶ 5.3.5. Varillas de acero
- ▶ 5.3.6. Anclaje y doblez
- ▶ 5.3.7. Grado de permeabilidad
- ▶ 5.3.8. Contenido de cloruros
- ▶ 5.3.9. Desniveles
- ▶ 5.3.10. Drenajes
- ▶ 5.3.11. Pares galvánicos
- ▶ 5.3.11.1. Instalaciones aéreas
- ▶ 5.3.11.2. Inmersos en concreto
- ▶ 5.3.12. Impermeabilización
- ▶ 5.3.13. Separación entre separadores
- ▶ 5.4. Inicio de la vida de servicio (puesta en servicio y entrada de agresivos)
- ▶ 5 4 1 Generalidades
- 5.4.2. Verificación de recubrimiento de concreto
- ▶ 5.4.3. Dosificación de mezcla
- ▶ 5.4.4. Varillas de acero
- ▶ 5.4.5. Anclaje y doblez
- ▶ 5.4.6. Grado de permeabilidad
- ▶ 5.4.7. Contenido de cloruros
- ▶ 5.4.8. Desniveles
- ▶ 5.4.9. Drenajes
- ▶ 5.4.10. Pares galvánicos
- 5.4.10.1. Instalaciones aéreas
- ▶ 5.4.10.2. Inmersos en concreto

- 5.4.6. Grado de permeabilidad
- 5.4.7. Contenido de cloruros
- 5.4.8. Desniveles
- 5.4.9. Drenajes
- 5.4.10.Pares galvánicos
- 5.4.10.1. Instalaciones aéreas
- 5.4.10.2. Inmersos en concreto
- 5.4.11. Impermeabilización



Índice

- ▶ 5.4.11. Impermeabilización
- <u>5.5. Vida de servicio (Etapa de propagación mantenimiento preventivo o no)</u>
- ▶ 5.5.1. Generalidades
- ▶ 5.5.2. Criterios de durabilidad
- 5.5.2.1. Corrosión por cloruros en concreto
- 5.6. Vida de servicio residual (Etapa de propagación, mantenimiento correctivo)
- ▶ 5.6.1. Generalidades
- ▶ 5.6.2. Especificaciones contra el ataque ambiental
- ▶ 5.6.3. Corrosión del refuerzo
- 5.6.3.1. Técnicas de reparación y rehabilitación de estructuras de concreto en ambiente tropical marino
- 5.6.3.1.1. Imprimaciones al acero de refuerzo como método de reparación por problemas de corrosión
- 5.7 Vida residual (cualquier mantenimiento no recupera prestación)
- ▶ 5.7.1 Generalidades
- 5.7.2. Valores máximos de la abertura de la grieta
- ▶ 5.7.3. Cantidad de grietas
- ▶ 5.8. Fin de la vida residual (inicio del colapso parcial o total)
- 6. Muestreo
- 7. Métodos de ensayo

5.5. Vida de servicio (Etapa de propagación, mantenimiento preventivo o no)

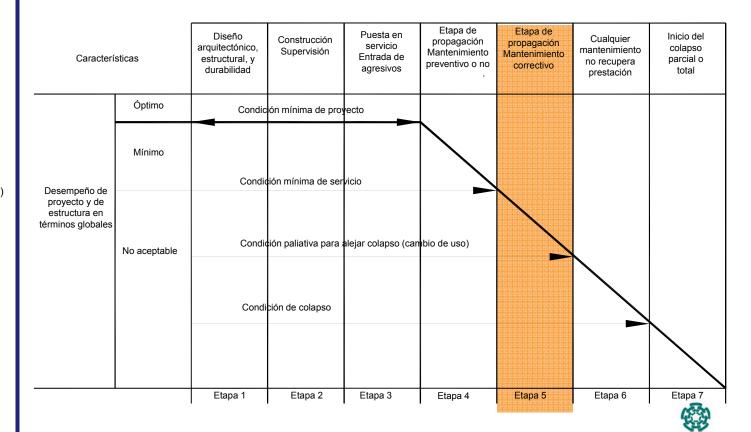
Inicia la propagación de daños. El inicio de esta etapa debe ser seguido de cerca para poder plantear, eventualmente, cualquier acción para enmendar el plan de mantenimiento preventivo.

Índice

- ▶ 5.4.11. Impermeabilización
- <u>5.5. Vida de servicio (Etapa de propagación mantenimiento preventivo o no)</u>
- ▶ 5.5.1. Generalidades
- ▶ 5.5.2. Criterios de durabilidad
- ▶ 5.5.2.1. Corrosión por cloruros en concreto
- 5.6. Vida de servicio residual (etapa de propagación, mantenimiento correctivo)
- ▶ 5.6.1. Generalidades
- ▶ 5.6.2. Especificaciones contra el ataque ambiental
- ▶ 5.6.3. Corrosión del refuerzo
- 5.6.3.1. Técnicas de reparación y rehabilitación de estructuras de concreto en ambiente tropical marino
- 5.6.3.1.1. Imprimaciones al acero de refuerzo como método de reparación por problemas de corrosión
- 5.7 Vida residual (cualquier mantenimiento no recupera prestación)
- ▶ 5.7.1 Generalidades
- ▶ 5.7.2. Valores máximos de la abertura de la grieta
- ▶ 5.7.3. Cantidad de grietas
- ▶ 5.8. Fin de la vida residual (inicio del colapso parcial o total)
- ▶ 6. Muestreo
- 7. Métodos de ensayo

5.5.2. Criterios de durabilidad

- a) Potencial de corrosión del refuerzo
- b) Velocidad de corrosión del refuerzo
- c) Resistividad del concreto
- d) Resistencia a la tensión por compresión diametral
- e) Determinación del índice de rebote por medio de la Esclerometría
- f) Absorción por capilaridad
- 5.5.2.1. Corrosión por cloruros en concreto reforzado expuesto a ambiente tropical marino



Índice

- ▶ 5.4.11. Impermeabilización
- 5.5. Vida de servicio (Etapa de propagación mantenimiento preventivo o no)
- ▶ 5.5.1. Generalidades
- ▶ 5.5.2. Criterios de durabilidad
- ▶ 5.5.2.1. Corrosión por cloruros en concreto
- <u>5.6. Vida de servicio residual (etapa de propagación, mantenimiento correctivo)</u>
- ▶ 5.6.1. Generalidades
- 5.6.2. Especificaciones contra el ataque ambiental
- ▶ 5.6.3. Corrosión del refuerzo
- 5.6.3.1. Técnicas de reparación y rehabilitación de estructuras de concreto en ambiente tropical marino
- 5.6.3.1.1. Imprimaciones al acero de refuerzo como método de reparación por problemas de corrosión
- 5.7 Vida residual (cualquier mantenimiento no recupera prestación)
- ▶ 5.7.1 Generalidades
- 5.7.2. Valores máximos de la abertura de la grieta
- ▶ 5.7.3. Cantidad de grietas
- ▶ 5.8. Fin de la vida residual (inicio del colapso parcial o total)
- 6 Muestreo
- 7. Métodos de ensayo

5.6. Vida de servicio residual (Etapa de propagación, mantenimiento correctivo)

Cuando los agentes agresivos llegan al acero de refuerzo o se han producido situaciones en el elemento o estructura que podrían comprometer su confiabilidad arquitectónica, estructural o de durabilidad, es necesario acciones correctivas inmediatas...

Índice

- ▶ 5.4.11. Impermeabilización
- 5.5. Vida de servicio (Etapa de propagación mantenimiento preventivo o no)
- ▶ 5.5.1. Generalidades
- ▶ 5.5.2. Criterios de durabilidad
- 5.5.2.1. Corrosión por cloruros en concreto
- <u>5.6. Vida de servicio residual (etapa de propagación, mantenimiento correctivo)</u>
- ▶ 5.6.1. Generalidades
- ▶ 5.6.2. Especificaciones contra el ataque ambiental
- ▶ 5.6.3. Corrosión del refuerzo
- 5.6.3.1. Técnicas de reparación y rehabilitación de estructuras de concreto en ambiente tropical marino
- 5.6.3.1.1. Imprimaciones al acero de refuerzo como método de reparación por problemas de corrosión
- 5.7 Vida residual (cualquier mantenimiento no recupera prestación)
- ▶ 5.7.1 Generalidades
- 5.7.2. Valores máximos de la abertura de la grieta
- ▶ 5.7.3. Cantidad de grietas
- ▶ 5.8. Fin de la vida residual (inicio del colapso parcial o total)
- ▶ 6. Muestreo
- 7. Métodos de ensayo

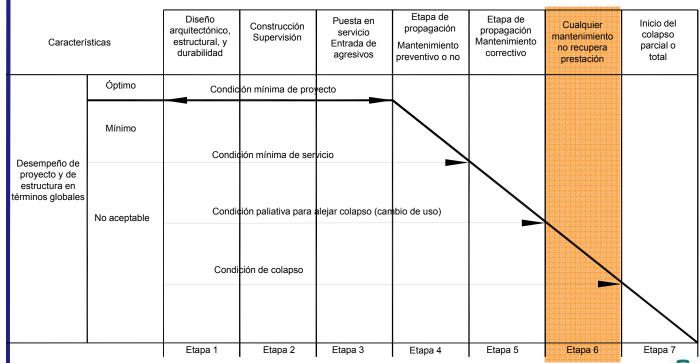
5.6.2. Especificaciones contra el ataque ambiental

5.6.3. Corrosión del refuerzo

5.6.3.1. Técnicas de reparación y rehabilitación de estructuras de concreto en ambiente tropical marino.

5.6.3.1.1. Imprimaciones al acero de refuerzo como método de reparación por problemas de corrosión en el concreto reforzado.

Índice

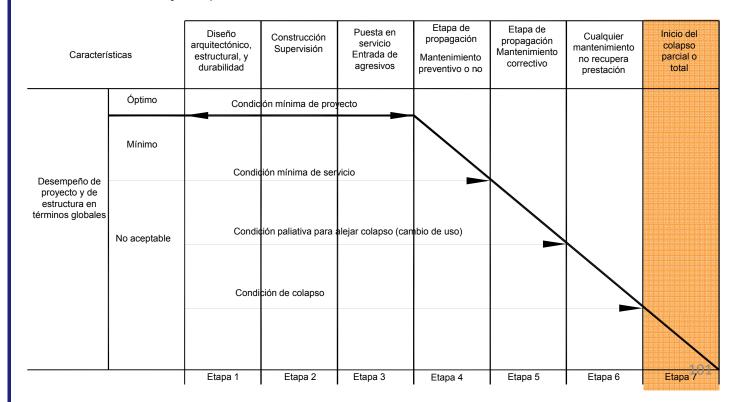

- ▶ 5.4.11. Impermeabilización
- 5.5. Vida de servicio (Etapa de propagación mantenimiento preventivo o no)
- ▶ 5.5.1. Generalidades
- ▶ 5.5.2. Criterios de durabilidad
- ▶ 5.5.2.1. Corrosión por cloruros en concreto
- 5.6. Vida de servicio residual (etapa de propagación, mantenimiento correctivo)
- ▶ 5.6.1. Generalidades
- ▶ 5.6.2. Especificaciones contra el ataque ambiental
- ▶ 5.6.3. Corrosión del refuerzo
- 5.6.3.1. Técnicas de reparación y rehabilitación de estructuras de concreto en ambiente tropical marino
- 5.6.3.1.1. Imprimaciones al acero de refuerzo como método de reparación por problemas de corrosión
- <u>5.7 Vida residual (cualquier mantenimiento no recupera prestación)</u>
- ▶ 5.7.1 Generalidades
- 5.7.2. Valores máximos de la abertura de la grieta
- ▶ 5.7.3. Cantidad de grietas
- ▶ 5.8. Fin de la vida residual (inicio del colapso parcial o total)
- ▶ 6. Muestreo
- 7. Métodos de ensayo

5.7. Vida residual (cualquier mantenimiento no recupera prestación)

Esta etapa es cuando los daños que se han presentado ya son mayores y comprometen la confiabilidad arquitectónica, estructural o de durabilidad.

5.7.2. Valores máximos de la abertura de la grieta

5.7.3. Cantidad de grietas



Índice

- ▶ 5.4.11. Impermeabilización
- 5.5. Vida de servicio (Etapa de propagación mantenimiento preventivo o no)
- ▶ 5.5.1. Generalidades
- ▶ 5.5.2. Criterios de durabilidad
- 5.5.2.1. Corrosión por cloruros en concreto
- 5.6. Vida de servicio residual (etapa de propagación, mantenimiento correctivo)
- ▶ 5.6.1. Generalidades
- ▶ 5.6.2. Especificaciones contra el ataque ambiental
- ▶ 5.6.3. Corrosión del refuerzo
- 5.6.3.1. Técnicas de reparación y rehabilitación de estructuras de concreto en ambiente tropical marino
- 5.6.3.1.1. Imprimaciones al acero de refuerzo como método de reparación por problemas de corrosión
- 5.7 Vida residual (cualquier mantenimiento no recupera prestación)
- ▶ 5.7.1 Generalidades
- 5.7.2. Valores máximos de la abertura de la grieta
- ▶ 5.7.3. Cantidad de grietas
- 5.8. Fin de la vida residual (inicio del colapso parcial o total)
- ▶ 6. Muestreo
- 7. Métodos de ensayo

5.8. Fin de la vida residual (Inicio del colapso parcial o total)

Cuando una estructura presenta colapsos parciales y no pasa las pruebas convencionales y especializadas de confiabilidad

Índice

- ▶ 5.4.11. Impermeabilización
- 5.5. Vida de servicio (Etapa de propagación mantenimiento preventivo o no)
- ▶ 5.5.1. Generalidades
- ▶ 5.5.2. Criterios de durabilidad
- 5.5.2.1. Corrosión por cloruros en concreto
- 5.6. Vida de servicio residual (etapa de propagación, mantenimiento correctivo)
- ▶ 5.6.1. Generalidades
- ▶ 5.6.2. Especificaciones contra el ataque ambiental
- ▶ 5.6.3. Corrosión del refuerzo
- 5.6.3.1. Técnicas de reparación y rehabilitación de estructuras de concreto en ambiente tropical marino
- 5.6.3.1.1. Imprimaciones al acero de refuerzo como método de reparación por problemas de corrosión
- 5.7 Vida residual (cualquier mantenimiento no recupera prestación)
- ▶ 5.7.1 Generalidades
- 5.7.2. Valores máximos de la abertura de la grieta
- ▶ 5.7.3. Cantidad de grietas
- 5.8. Fin de la vida residual (inicio del colapso parcial o total)
- ▶ 6. Muestreo
- 7. Métodos de ensayo

6. Muestreo

Durante las etapas de vida de servicio de una estructura pueden llevarse a cabo los mismos tipos de muestreo para los mismos tipos de prueba que sin embargo pueden tener una interpretación diferente en función de la edad, condiciones de uso y exposición al ambiente.

En términos generales el muestreo debe contemplar:

- Un criterio para seleccionar áreas de evaluación.
- Un criterio para extraer las muestras y/o medir.
- Un criterio de interpretación de resultados.

Índice

- ▶ 5.4.11. Impermeabilización
- 5.5. Vida de servicio (Etapa de propagación mantenimiento preventivo o no)
- ▶ 5.5.1. Generalidades
- ▶ 5.5.2. Criterios de durabilidad
- ▶ 5.5.2.1. Corrosión por cloruros en concreto
- 5.6. Vida de servicio residual (etapa de propagación, mantenimiento correctivo)
- ▶ 5.6.1. Generalidades
- ▶ 5.6.2. Especificaciones contra el ataque ambiental
- ▶ 5.6.3. Corrosión del refuerzo
- 5.6.3.1. Técnicas de reparación y rehabilitación de estructuras de concreto en ambiente tropical marino
- 5.6.3.1.1. Imprimaciones al acero de refuerzo como método de reparación por problemas de corrosión
- ▶ 5.7 Vida residual (cualquier mantenimiento no recupera prestación)
- ▶ 5.7.1 Generalidades
- ▶ 5.7.2. Valores máximos de la abertura de la grieta
- ▶ 5.7.3. Cantidad de grietas
- ▶ 5.8. Fin de la vida residual (inicio del colapso parcial o total)
- ▶ 6. Muestreo
- > 7. Métodos de ensayo

7. Métodos de ensayo

Req	Se debe utilizar el método de prueba indicado en:				
Resistencia a la compresión	Concreto reforzado	NMX-C-083-ONNCCE			
(kg/cm ²)	Concreto presforzado o postensado	NMX-C-169-ONNCCE (véase			
	·	Capítulo 3)			
Relación agua – cemento	Concreto reforzado	NMX-C-159 (véase Capítulo 3)			
_					
Contenido de cemento para	Concreto reforzado	véase 8.2			
agregados gruesos entre 20 y 40 mm (kg/m³)	Concreto presforzado o postensado				
Contenido de aire por tamaño	≤ 40 mm	NMX-C-157, NMX-C-162 (véase			
máximo de agregado %. Se permite	<u><</u> 20 mm	Capítulo 3)			
una tolerancia de <u>+</u> 1.5%	<u><</u> 10 mm				
Requisitos adicionales para		véase 8.3			
agregado					
Requisitos adicionales para		véase Tablas 5 y 6			
cemento					
	Ataque por exposición ambiental				
Humedad relativa		véase 8.5			
pH en agua		NMX-C-AA-088-89			
CO ₂ en agua		NMX-C-283			
Amonio en el agua		NMX-C-283			
Sulfato en el agua		NMX-C-283			
Sulfatos en el suelo		NMX-C-283			
Ácidos en el suelo					
Contenido de cemento		véase 8.4			
Resistencia al congelamiento de agre		véase 8.3			
	ico de agentes agresivos cuando exis	sten sulfatos			
Tipo de cemento					
Máxima relación agua/cementante	7	véase 8.2 y 8.3			
Mínimo contenido de cementante (kg/	véase 8.3				
Protección adicional					
	o de agentes agresivos cuando no ex	kisten sulfatos			
Tipo de cemento					
Máxima relación agua/cementante	3	véase 8.2 y 8.3			
Mínimo contenido de cementante (kg/	/m³)	véase 8.3			
Protección adicional	103				

Índice

- ▶ 8. Bibliografía
- 9. Concordancia con normas internacionales
- ▶ 10. Vigencia

8. Bibliografía

En este capítulo se indican las fuentes bibliográficas que han sido consultadas para el establecimiento de los fundamentos de la norma, considerando en primer término las normas nacionales, extranjeras e internacionales.

9. Concordancia con normas internacionales

Este documento no es equivalente con algún documento internacional ya que no existe alguno sobre el tema tratado, y no es posible concordar con el concepto internacional por razones particulares del país tales como el clima.

10. Vigencia

La presente norma entrará en vigor a los sesenta días siguientes de la declaratoria de vigencia publicada por la Secretaría de Economía en el Diario Oficial de la Federación.

Conclusiones

☐ La norma general mexicana de durabilidad de concreto reforzado, se realizó con el propósito de verse convertida en un parte aguas en la normativa mexicana y una influencia muy fuerte en la normativa internacional.

□ Debido a la demanda actual del mundo de la construcción la norma se ha hecho con el fin de tener la flexibilidad necesaria para que todos los que intervengan en la elaboración de una obra sean capaces de optar por el medio que así les convenga.

Recomendaciones

Basados en necesidades desde el punto de vista de Ingeniería Civil, se recomienda lo siguiente:

- ☐ Realizar cambios constantes a las estrategias de prevención, mantenimiento, rehabilitación y cambio de uso de las estructuras.
- □ Al crear una norma se recomienda crear un grupo de trabajo para poder abordar distintos puntos de vista así como tomar en cuenta la experiencia de los mismos.
- ☐ Al momento de proyectar, prestar principal atención a las clasificaciones ambientales, ya que son las que rigen los criterios a considerar en la estructura.

Corrosión en la Ingeniería Civil

Efectos de la corrosión en estructuras de concreto armado

Sobre el acero

Pérdida de sección y disminución de su capacidad mecánica

Sobre el concreto

Manchas, grietas y desprendimient os o dela minaciones Sobre la adherencia acero/concreto

Incapacidad para transmitir la elevada resistencia a la tracción del acero de refuerzo al concreto

Condicionamiento de la durabilidad de las estructuras

Bibliografía

- 1.- ABNT NBR 6118 "Diseño de estructuras de hormigón Procedimiento", Asociación Brasileña de Normas Técnicas,
 2003.
- 2.- ACI 204 "Design and construction practices to mitigate cracking", American Concrete Institute.
- 3.- ACI 304 "Guide for measuring, mixing, transporting, and placing concrete", American Concrete Institute.
- 4.- ACI 305 "Hot weather concreting", American Concrete Institute.
- 5.- ACI 309 "Guide for consolidation of concrete", American Concrete Institute.
- 6.- ACI 318 "Building Code Requirements for Structural Concrete", American Concrete Institute, 2002.
- 7.- Articulo 915 Tratado de Libre Comercio con América del Norte.
- 8.- ASTM-C-150-93 "Specification for Portland cement".
- 9.-ASTM-E-337-90 "Test method for measuring humidity with a psychrometer (the measurement of wet bulbanddry bulb temperature)".
- 10.- ASTM-C-494 "Standard Specification for Chemical Admixtures for Concrete".
- 11.- ASTM-C-682-87 "Standard recommended practice for evaluation of frost resistance of coarse aggregates in air— Entrained concrete by critical dilation procedures".
- 12.- ASTM-C-685 "Standard specification for concrete made by volumetric batching and continuous mixing".

.....

Por su atención Muchas Gracias!

¡Gracias por su atención!

Caso Europeo

• LIFECON D 3.2

Probabilistic service life models for reinforced concrete structures.

Modelos para la predicción de la vida útil residual

Los modelos para la predicción de la vida útil residual requieren datos de entrada, que pueden ser proporcionados por la literatura y/o investigaciones de la estructura. Por lo tanto, el modelado de vida de servicio está estrechamente relacionado con un protocolo de evaluación del estado (CAP).

➤ Los modelos son parte integral de un procedimiento paso a paso de evaluación y se aplican en dos niveles de sofisticación:

- Nivel semi-probabilísticos
- Nivel Probabilísticos

Modelos para la predicción de la vida útil residual

- Nivel semi-probabilísticos
 - Las funciones de deterioro dependientes del tiempo son usadas sobre un nivel básico de ingeniería.
 - Los datos de entrada se obtienen solamente de inspecciones. Como éstos datos se basan en un bajo alcance de la muestra, la dispersión se explica por factores de seguridad, que son una función de la dispersión de espera y el nivel deseado de fiabilidad.
 - Los datos de la respuesta observada combina la resistencia del material y la acción del ambiente. El resultado de este cálculo es el tiempo hasta que un estado límite considerado es alcanzado con un nivel predefinido de fiabilidad.

Modelos para la predicción de la vida útil residual

- ➤ Nivel probabilísticos
 - En un nivel superior de inspección el modelo probabilístico se aplica durante el procedimiento de evaluación de condiciones.
 - Los modelos separan la resistencia de los materiales y las cargas ambientales. Esto requiere la recopilación y procesamiento de los datos de entrada de cada uno de ellos para la calibración de las ecuaciones empíricas.
 - Los modelos probabilísticos requieren la aplicación de un software especial y personal capacitado. Los datos de entrada se actualiza durante las investigaciones estructura.

Lo que no incluye LIFECON D.32

- × Definiciones actualizadas de Durabilidad y Vida de servicio.
- × Consideraciones que tomen en cuenta las zonas climáticas y el cambio climático.
- × Visión holística del problema de la vida de servicio.

